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Abstract 
 
In recent papers I have proposed to use the Montgomery decomposition in case of an 
additive decomposition (De Boer, 2008) and the Sato-Vartia decomposition for the 
multiplicative case (De Boer, 2007), rather than the commonly used methods of taking 
the average of the two polar decompositions or the average of all decompositions 
(Dietzenbacher and Los, 1998).The disadvantage of the average of the two polar 
decompositions is that it does not satisfy factor reversal which means that the order of 
appearance of the factors in the decomposition matters. The average of all elementary 
decompositions meets this requirement, but needs the computation of !r  
decompositions, r being the number of factors.  Both the Montgomery and the Sato-
Vartia decomposition, borrowed from index number theory, are ideal and require the 
computation of only one decomposition. The disadvantage is that they are not “change-
in-sign robust”, i.e. they cannot handle values that in one period are positive and in the 
other negative. Ang, Liu and Chung (2004) have proposed to use a generalized Fisher 
index approach which is ideal and negative value robust and give the formulae for the 
cases of three and four factors. I show that this approach is equivalent to the method of 
taking the average of all elementary decompositions. The example of Chung and Rhee 
(2001) which deals with energy-related 2CO  emissions for seven intermediate demand 
sectors in the Korean economy serves as empirical application. Moreover, I give two 
tables from which the formulae for the cases of five and six factors are easily 
implemented.  
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1. Introduction 
 

In recent years a large number of empirical articles on structural decomposition analysis, 
which aims at disentangling an aggregate change in a variable into its r  factors, have 
been published in Economic Systems Research. For an additive decomposition 
commonly used methods are the arithmetic average of the two polar decompositions 
and the arithmetic average of all elementary decompositions ( !r ), whereas for a 
multiplicative decomposition the corresponding geometric averages are commonly used. 
The advantage of the average of all elementary decompositions is that it is satisfies 
factor reversal, so that it is “ideal”, but it requires !r  decompositions, whereas for the 
average of the two polar decompositions only two decompositions are required, but it is 
not ideal. In recent papers I have proposed to use the Montgomery decomposition in 
case of an additive decomposition (De Boer, 2008) and the Sato-Vartia decomposition 
for the multiplicative case (De Boer, 2007). Both decompositions, borrowed from index 
number theory, are ideal and require the computation of only one decomposition. The 
disadvantage is that they are not “change-in-sign robust”, i.e. they cannot handle values 
that in one period are positive and in the other negative.  
 
In the framework of a multiplicative decomposition1 Ang, Liu and Chung (2004) have 
proposed to use a generalized Fisher index approach which is ideal and change-in-sign 
robust, but, according to Ang c.s., the formula, either based on Siegel (1945) or on 
Shapley (1953), is relatively complex, especially for a large number of factors r. We 
apply the generalized Fisher index approach to the same example they use, i.c. the 
example of Chung and Rhee (2001) which deals with energy-related 2CO  emissions for 
seven intermediate demand sectors in the Korean economy. We show that the 
complicated formula for the cases of 3r = and 4r =  given by Ang c.s. are nothing but the 
geometric average of the 6!3 = and 24!4 = elementary decompositions, respectively.  
 
The organization of this paper is as follows: in section two I apply the reasoning of SDA 
to the well-known decomposition of a change in value into changes in price and quantity. 
It is easily shown that the SDA approach is equivalent to the use of the Fisher indices for 
two factors in IDA. The formula is summarized in the form of a table which will be 
generalized to a higher number of factors. In section 3 I use the example of Chung and 
Rhee (2001) of the decomposition of energy-related 2CO  emissions for seven 
intermediate demand sectors in the Korean economy in order to deal with the case of 
three factors. Again, I show that the generalized Fisher approach is equivalent to SDA 
and that commonly used methods of SDA yield empirical results that are very close to 
each other. A summarizing table is presented, as well. Section 4 is devoted to the 
treatment of the four-factor case by Ang,c.s. (2004) in the framework of the same 
example. The difference between their approach and mine is that they did not realize 
that the decomposition, reading in four factors, can be reduced to a decomposition 
reading in three factors. I show that SDA and generalized Fisher yield the very same 
formulae and provide the summarizing table. In section 5 I give the summarizing tables 
from which the formulae can easily be derived for the cases of five (120 elementary 
decompositions) and six factors (720 elementary decompositions) . Section 6, finally, 
contains some final remarks. Last, but not least, in order to give proper credit to the 
contributions of Siegel and Shapley, I propose to replace the name of “generalized 
Fisher” or “Structural Decomposition Analysis” by “Siegel-Shapley decomposition”.  
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2. Decomposition and index number theory: the case of two factors (price and quantity) 
 
2.1. The Fisher index 
 
 Let )1(pi  and )0(pi denote the prices of commodity i (= 1,…,n) in comparison and base 
period, and let )1(qi  and )0(qi be the corresponding quantities. Then, the ratio of total 
expenditure in comparison and in base period is defined as: 
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In the terminology of decomposition analysis we have to decompose (1) into its factors 
“price” and “quantity”. One possible solution, the so-called first polar decomposition, is: 
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In index number theory (omitting the commonly used factor 100) the price term is the 
named the price index of Paasche and the quantity term the quantity index of 
Laspeyres, so that: 
 

LP QP]0,1[DV ×=                                                                                                            (3) 
 
It is easily seen that if we reverse base and comparison period (0 to 1 and 1 to 0) that  
for the first polar decomposition (2) generally 1]1,0[DV]0,1[DV ≠× holds true. In the 
terminology of index number theory, the first polar decomposition does not meet the 
requirement of time reversal:  
 

1]1,0[DV]0,1[DV =×          
                                                                                                      
 However, this is not the only possibility. By reversing the time periods in the weights (0 
to 1, and 1 to 0) we obtain the second polar decomposition: 
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In index number theory the price term is the named the price index of Laspeyres and 
the quantity term the quantity index of Paasche so that: 
 

PL QP]0,1[DV ×=                                                                                                            (5) 
 
The second polar decomposition does not meet the requirement of time reversal, either. 
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The solution that is commonly adopted in decomposition analysis is to take the 
geometric mean of the two polar decompositions (2) and (4) which meets the 
requirement of time reversal. In terms of index number theory we take the geometric 
mean of (3) and (5), which can be written as: 
 

( ) ( ) 2/1PL2/1LP QQPP]0,1[DV ××=                                                                                     (6) 
 
The first term is the definition of the Fisher price index ( FP ) and the second one the 
Fisher quantity index (Fisher, 1922). Consequently, the geometric mean of the two 
polar decompositions yields: 
 

FF QP]0,1[DV ×=                                                                                                             (7) 
 
 It can easily shown that if in the formula of the Fisher price index, we reverse the factors 
(p to q and q to p) that we obtain the Fisher quantity index. Indices that exhibit this 
property of factor reversal are called “ideal”. 
 
2.2. Summary 
 
In view of the generalization to more than 2 factors I give the following summary. 
In case of 2r =  factors, there are == !2!r 2 permutations, which are called the 
elementary decompositions, i.c. the polar ones: (2) and (4). Consider the first factor: 
“price”. In (2) the quantity term in numerator and denominator is the one in the 
comparison period {1}; the number of duplicates is 1 (which means that in case of 2r =  
“permutation” and “combination” are synonyms), whereas the exponent in the geometric 
average (6) is equal to .2/1  In (4) the quantity term in numerator and denominator is the 
one in the base period {0}; the number of duplicates is 1 again, whereas the exponent in 
the geometric average is also equal to .2/1 This can be summarized as follows: 
 
Table 1. Case of two factors 

 
 
 
 
 

 
If we look at the second factor, “quantity”, we observe that the combinations are either 
{1} or {0} again, that the number of duplicates is 1, as well, whereas the exponent is also 
equal to .2/1  Consequently, the table applies to both (=all) factors. 
 
3. Decomposition and index number theory: the case of three factors (Chung and Rhee) 
 
3.1. Decomposition analysis 
 
Chung and Rhee (2001) made a decomposition of the sources of carbon dioxide 
emissions for 7n =  Korean industries. They gently supplied the data in their article, so 
that other researchers, like me, can profitably make use of their example. It reads: the 

Number 
of ones 

Combinations Number of
duplicates 

Exponent

1 {1} 1 ½ 
0 {0} 1 ½ 
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emissions of 2CO from the intermediate demand sectors, pC , can be estimated using 
the input-output relation: 
 

DuyfC '
p =     

                                                                                                                   
where:  
 
f  : vector with typical element if , the amount of 2CO emitted per unit of production in  
      industry i;  
D : Leontief inverse matrix with typical element ijd ; 

u :  vector with typical element ju , the share of industry j in final demand, and 
y : gross domestic product (GDP). 
 
The task is to apply a multiplicative decomposition of the change in the emissions from 
the intermediate demand sectors, pC , into the changes in emission coefficient , 

)0(f/)1(f ii , in production technology , )0(d/)1(d ijij , in the structure of the final demand, 

)0(u/)1(u jj , and in the size of the economy, )0(y/)1(y , i.e.:  
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In (8) we have already separated the contribution of the size of the economy, ( y ), from 
the remaining 3r =  factors, viz. emission coefficients ( if ), production technology ( ijd ) 

and structure of the final demand ( ju ). 
 
There are 3! = 6 permutations (= elementary decompositions) of the second term in (8) 
which are given in Table 2. 
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Table 2. Elementary decompositions of the Chung-Lee example  
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Decompositions 1 and 6 are called the polar decompositions; see for instance   
Dietzenbacher and Los (1998). In practice, quite often researchers use the geometric 
average of these two polar decompositions as “generalization” of the Fisher index (7) to 
three (or more) factors. But De Haan (2001) has argued that this is but one mirror pair 
(changing zeros into ones and ones into zeros). In this case there are two other mirror 
pairs, viz. 2 and 4, and 3 and 5. Each of them constitutes another “generalization” of the 
Fisher index. These two mirror pairs satisfy time reversal, as well. Dietzenbacher and 
Los (1998), finally, propose to use the average of all elementary decompositions, which 
also constitutes a generalization of the Fisher index. In De Boer (2007) I argued that the 
geometric average of all elementary decompositions is to be preferred to each one of the 
mirror pairs, because it does not only satisfy time reversal, but also factor reversal, i.e. it 
is, like the Fisher index in case of two factors, ideal . 
The results for the six elementary decompositions, the average of the mirror pairs and 
the geometric average of the six elementary decompositions are given in Table 3. 
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Table 3. Numerical results of the decompositions of the Chung-Rhee example (the 
change in the size of the economy is equal to 2.107494 in all decompositions) 
 
Decomposition 

2CO  per unit 
( eDF ) 

Leontief inverse 
( eDD ) 

Industry share 
( eDU ) 

Elementary: 1e  0.751053 0.966940 1.027354 

Elementary: 2e  0.751053 0.964832 1.029580 

Elementary: 3e  0.757830 0.958292 1.027353 

Elementary: 4e  0.754164 0.958292 1.032348 

Elementary: 5e  0.747087 0.964832 1.035064 

Elementary: 6e  0.754164 0.955778 1.035064 

    
Polar:  
( 1e  and 6e ) 

0.752607 0.961343 1.031202 

Mirror pair 1: 
 ( 2e  and 4e ) 

0.752607 0.961556 1.030972 

Mirror pair 2: 
( 3e  and 5e ) 

0.752439 0.961556 1.031202 

    
Generalized 
Fisher 

0.752551 0.961485 1.031125 

 
From an empirical point of view the results of the geometric average of the polar 
decompositions, the geometric average of mirror pairs 1 and 2, and the geometric 
average of all elementary decompositions (named “generalized Fisher”, see below) are 
extremely close to each other. 
 
3.2. Index number theory 
 
Consider the second column of Table 2 in which I give the elementary decompositions of 
the factor f (amount of 2CO emitted per unit of production in the industries). We remark 
that the terms 1 and 2 are equal to each other, as well as the terms 5 and 6. Collecting 
the duplicates we can rewrite the geometric average of the six elementary 
decompositions, 
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3
1

321

321
2
1

321

321

321

321

321

321

)0(x)0(x)0(x
)0(x)0(x)1(x

)1(x)0(x)0(x
)1(x)0(x)1(x

)0(x)1(x)0(x
)0(x)1(x)1(x

)1(x)1(x)0(x
)1(x)1(x)1(x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∑
∑

∑
∑

∑
∑

∑
∑ (9)        

where we replaced if  by 1x , ijd by 2x , and ju by 3x .  
 
Expression (9) is the generalization of Gini (1937) of the Fisher index to three factors. 
Siegel (1945) has generalized the Fisher index to an arbitrary number of factors r. His 
formula, however, is hardly readable and is given without proof. He supplies the results 
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for the special cases of 2r =  (Fisher), 3r = (Gini) and 4r = . The latter will be presented 
in the next section. Expression (9) is also equivalent to the formula (7) given in the article 
by Ang, Liu and Chung (2004) who make use of the very complicated formula of the n-
factor Shapley value (Shapley,1953). Ang c.s give the name of “generalized Fisher” to 
this decomposition. 
 
3.3. Summary 
 
In (9) we first have a term, where the weight is given by the combination {1,1}, which 
occurs two times in Table 3, and where the exponent is equal to 1/3; in the middle we 
have two terms with the combinations {1,0} and {0,1} as weights, and exponent 1/6, 
whereas the final term has weight {0,0}, occurs two times in Table 3, whereas the 
exponent is 1/3. This is summarized in the following table. 
 
Table 4. Summary for the case of three factors 
Number 
of ones 

Combinations Number of
duplicates 

Exponent

2 {1,1}  2 1/3 
1 {1,0} {0,1} 1 1/6 
0 {0,0}  2 1/3 

 
As before this table is valid for each of the three factors. 
 
4. The case of four factors (Ang, Liu and Chung)  
 
Ang, Liu and Chung (2004) have used the same example as the one I used in section 3. 
The difference between their approach and mine is that they did not realize that when 
taking the ratio of 

pCD in equation (8) the scalar )0(y/)1(y  was independent from the 
indices and, consequently, could be factorized out, reducing the decomposition reading 
in four factors to a decomposition reading in three factors. If one uses 4r =  factors, then 
we have 24!4 =  permutations (elementary decompositions) that are given in Table 5. 
For ease of exposition, we have replaced the name of the factors by 1x  through 4x . 
 
Consider the first term of decomposition 1. Mathematically, it reads: 

∑
∑

)1(x)1(x)1(x)0(x
)1(x)1(x)1(x)1(x

4321

4321 . But the first term of the decompositions 2,3,4,5 and 6 is exactly 

the same, so that this expression occurs six times. 
 
 Consider the first term of decomposition 10. Like the first term of the decompositions 

12,16,18, 22 and 24 it reads:
∑
∑
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4321 . This expression occurs six times, 

as well. 

Next, consider the first term of decomposition 7: 
∑
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4321 , which equals 

the first term of the decomposition 8; this expression occurs twice. 
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The first terms of the decompositions 17 & 23 are equal to each; the same applies to the 
first terms of decompositions 11 & 21; 9 &15; 19 & 20; 13 & 14. 
 
Table 5. Elementary decompositions* in case n=4 
#  )x(d 1  2x  3x  4x  ×  1x  )x(d 2  3x 4x × 1x 2x )x(d 3  4x  ×  1x  2x 3x )x(d 4  

 1  1 1 1  0  1 1  0 0  1  0 0 0  
 2  1 1 1  0  1 1  0 0  0  0 0 1  
 3  1 1 1  0  0 1  0 1  1  0 0 0  
 4  1 1 1  0  0 0  0 1  1  0 1 0  
 5  1 1 1  0  1 0  0 0  0  0 1 1  
 6  1 1 1  0  0 0  0 1  0  0 1 1  
 7  0 1 1  1  1 1  0 0  1  0 0 0  
 8  0 1 1  1  1 1  0 0  0  0 0 1  
 9  0 0 1  1  1 1  1 0  1  0 0 0  
10  0 0 0  1  1 1  1 0  1  1 0 0  
11  0 1 0  1  1 1  0 0  0  1 0 1  
12  0 0 0  1  1 1  1 0  0  1 0 1  
13  1 0 1  0  0 1  1 1  1  0 0 0  
14  1 0 1  0  0 0  1 1  1  0 1 0  
15  0 0 1  1  0 1  1 1  1  0 0 0  
16  0 0 0  1  0 1  1 1  1  1 0 0  
17  1 0 0  0  0 0  1 1  1  1 1 0  
18  0 0 0  1  0 0  1 1  1  1 1 0  
19  1 1 0  0  1 0  0 0  0  1 1 1  
20  1 1 0  0  0 0  0 1  0  1 1 1  
21  0 1 0  1  1 0  0 0  0  1 1 1  
22  0 0 0  1  1 0  1 0  0  1 1 1  
23  1 0 0  0  0 0  1 1  0  1 1 1  
24  0 0 0  1  0 0  1 1  0  1 1 1  
* )0(x/)1(x)x(d iii = ;  defining )0(x)1(x)x(d iii −=  and replacing “ × ” by “ + ” we have the 24 elementary 
decompositions for the additive case. 
 
If we take the geometric mean of all 24 elementary decompositions and we collect the 
duplicates, we find: 
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This expression is given in Siegel (1945) for the case 4r = . 
 
It is equivalent to the formula that Ang, Liu and Chung (2004, p. 763) derived from the 
very complicated formula for the Shapley value in case 4r = . This formula can be 
summarized as follows: 
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Table 6. Summary for the case of four factors2 
 

Number 
of ones 

Combinations Number of
duplicates 

Exponent

3 {1,1,1}   6 ¼ 
2 {1,1,0} {1,0,1} {0,1,1} 2 1/12 
1 {0,0,1} {0,1,0} {1,0,0} 2 1/12 
0 {0,0,0}   6 ¼ 

 
Again, this table applies to all four factors. 
 
5. Results of Siegel for the case of five and six factors 
 
As said before, Siegel (1945) gave, without proof, a complicated and rather inaccessible 
formula for generating the combinations and their exponents. He only supplied the 
results for the cases  3,2r = and 4 . In the previous sections I gave these results, as well 
as a summary in the form of a table. It can be shown that it follows from Siegel’s formula 
that for the cases 5r = and 6r =  these summary tables read: 
 
Table 7. Summary for the case of five factors 

Number 
of ones 

Combinations Number of
duplicates 

Exponent 

4 {1,1,1,1}    24 1/5 
3 {1,1,1,0} {1,1,0,1} {1,0,1,1} {0,1,1,1} 6 1/20 
2 {1,1,0,0} {1,0,1,0} {0,1,1,0}  4 1/30 
 {0,0,1,1} {0,1,0,1} {1,0,0,1}  4 1/30 

1 {0,0,0,1} {0,0,1,0} {0,1,0,0} {1,0,0,0} 6 1/20 
0 {0,0,0,0}    24 1/5 

 
and: 
 
Table 8. Summary for the case of six factors 
Number of ones Combinations Number of 

duplicates 
Exponent 

5 {1,1,1,1,1}     120 1/6 
4 {1,1,1,1,0} {1,1,1,0,1} {1,1,0,1,1} {1,0,1,1,1} {0,1,1,1,1} 24 1/30 
3 {1,1,1,0,0} {1,1,0,1,0} {1,0,1,1,0} {0,1,1,1,0}  12 1/60 
 {1,1,0,0,1} {1,0,1,0,1} {0,1,1,0,1}   12 1/60 
 {1,0,0,1,1} {0,1,0,1,1}    12 1/60 
 {0,0,1,1,1}     12 1/60 

2 {0,0,0,1,1} {0,0,1,0,1} {0,1,0,0,1} {1,0,0,0,1}  12 1/60 
 {0,0,1,1,0} {0,1,0,1,0} {1,0,0,1,0}   12 1/60 
 {0,1,1,0,0} {1,0,1,0,0}    12 1/60 
 {1,1,0,0,0}     12 1/60 

1 {0,0,0,0,1} {0,0,0,1,0} {0,0,1,0,0} {0,1,0,0,0} {1,0,0,0,0} 24 1/30 
0 {0,0,0,0,0}     120 1/6 

 
It can be verified from the tables 1, 4, 6, 7 and 8 that Siegel has reduced the 
computational burden of calculating !r  permutations (and taking their unweighted 
geometric average) to calculating 1r2 −  combinations (and taking their weighted 
geometric average). The weights (exponents) are given in my tables 1, 4, 6, 7, and 8. In 
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case 6r =  (Table 8), for example, the number of decompositions to be calculated is 
reduced from 720 to 32. How to use these tables? As example I take the combination 
{1,0,0,0,1} ,boldfaced in Table 8, and use it for the contribution of factor 3x ; i.e. 

).(x/)(x 01 33  In the geometric average it reads:  
 

601

654321

654321

100001
100101

/

)(x)(x)(x)(x)(x)(x
)(x)(x)(x)(x)(x)(x

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑
∑  

 
With the aid of these tables the computer program to calculate the generalized Fisher 
index, although tedious, is easily implemented. 
 
6. Concluding remarks 
 
For the case of a multiplicative decomposition Siegel (1945)3 reduced, by collecting 
duplicates, the calculation of !r  permutations to the calculation of 1r2 −  combinations. 
Then, he proposed to calculate the weighted geometric average of the combinations, the 
number of duplicates being the exponent, which is equivalent to the calculation of the 
(unweighted) geometric average of all permutations, of course. Independently from 
Siegel, Shapley (1953) followed the same route for the additive decomposition: he 
reduced permutations to combinations and proposed to take the weighted arithmetic 
average, the number of duplicates being the divisor of each combination in the arithmetic 
average, see Albrecht et al. (2003)4. 
 
Last, but not least, in order to give credit to both Siegel’s and Shapley’s contributions I 
propose to use “Siegel-Shapley decomposition” rather than “generalized Fisher index” or 
“Structural Decomposition Analysis”. 
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1 For the additive decomposition, the use of the formula of Shapley has been proposed by 
Albrecht et al. (2002). Ang et al. (2003) have shown that it is equivalent to the method proposed 
by Sun (1998). 
2 De Haan (2001) has presented a similar table in case of an additive decomposition with four 
factors. 
3 I quote Siegel : “ … the problem considered here is the development of a general formula … 
satisfying the relationship nnnn V...C.B.A =   where the n factors on the left are the appropriate 

indexes of the )n,...,1i,...(c,b,a iii = ,respectively, for the time period 1t with respect to the base 

period 0t , and ∑∑= ...cba/...cbaV 000111n  is the unique index of the ...cbav iiii = “ (page 
520) and “The principle underlying the construction of our general formula is essentially simple.  
…. In fact, there are n! possible sets of aggregative indexes (including duplicates of individual 
measures) satisfying the relationship '

n
'
n

'
n

'
n V...C.B.A = . Now, these raw aggregative indexes do 

not meet the time-reversal and factor-reversal tests …. These two defects are easily overcome, 
however, if we take the geometric mean of the n! possible equations of the type 

'
n

'
n

'
n

'
n V...C.B.A =  and define nA  as the geometric mean over all the '

nA , including duplications, 

nB  as the geometric mean over all the '
nB , including duplications, etc; …. Each has 1n2 − distinct 

aggregative components…” (page 521). 
4 I quote from Albrecht et al. (2003), page 731: “ Indeed, the decomposition problem has formal 
similarities with a classical problem in cooperative game theory. Shapley (1953) was the first to 
give a formula for the real power of any given voter in a coalition voting game with transferable 
utility. This is commonly referred to as the Shapley value” …. “The Shapley decomposition 
iterates the cumulative approach for every possible order (permutation) of variables. With n 
variables, we need to make n! calculations, with each calculation based on another order for 
including new variables. The Shapley value implies that taking the average of the n! estimated 
contributions of each factor, yields the true contribution for each variable.”    


